

Efficient Aircraft Assignment for Search and Rescue of Threatened Population in Disaster Relief Operations

Adriana Andreeva-Mori Aeronautical Technology Directorate Japan Aerospace Exploration Agency

IFAR Virtual Conference

Air Traffic Management: Discussions between JAXA and NASA May 20, 2015 US / May 21, 2015 JAPAN

Outline: JAXA's system for disaster relief

- Disaster relief
 - Efficient reconnaissance
 - Prompt planning and execution of rescue missions
- JAXA's integrated aircraft operation system for disaster relief (D-NET 2)
 - Satellites
 - Manned aircraft
 - Unmanned aircraft

DIRECT
Search & Rescue

Collaboration with direct participants in disaster relief

Collaboration

System properties and requirements

- Enable safe and efficient operations
- Test concepts and strategies
- Demonstrate operations
 - Numerical simulations
 - Disaster drills
- Require partnerships
 - Fire departments
 - Disaster medical assistance teams
 - Industry
- Predict and manage congestions
- Handle heterogeneous vehicles

Search and rescue flow

*QOL: Quality of Life 5

Current research scope

Main constraints

- Hard time limit t_{lim} = 72 h
- Aircraft performance constraints
- Total number of aircraft

Problem formulation

2 Reconnaissance (Search)

Focus	Satellite, UAV & manned aircraft
Problem Setting	(Grid World) Exploration
Sample Method	Hybrid GA (under development)

3 Rescue

Focus	Real-time, multiple constraints optimization
Problem Setting	Scheduling
Sample Method	Hybrid PSO (under development)

- I. The best general resource distribution?
- II. Resources vs. necessary time
- III. Sufficient resources?

Simulation assumptions (preliminary)

- Iwate Prefecture (2nd largest in Japan, 15, 280 km²)
- Manned aircraft only
- One helicopter base
- Continuous operations
 (72 h→ 42 h)
- Available aircraft
- Aircraft operational constraints
 - Maximum fuel constraint(flight range 2.5 h 3.5 h)
 - Refuel time 20 (30) min
 - Passengers capacity: 5, 14, 25

Simulation cases

I. Search aircraft 50→40…10

II. Search aircraft 50 (const)

<u>Goal</u>

- Search the whole disaster area ASAP
- Transport all evacuees to the base ASAP

Search Optimization Results (Example)

II. Search aircraft 50 (const)

- Cluster-based algorithm
- Adjustments for operational constraints
- Cell priority!
- Flight routes also generated
- Very fast computation (less than a minute)
- Routes might vary,
 but reconnaissance time is robust.
- → strategic planning

Result Analysis

- In reality, less than 50 search aircraft
 - UAV can be the key
- Accurate prediction of needs location
 - "uncertainties" considered in new simulation

 Resource allocation curve is more complicated than expected

- Dependence on disaster scenario
- More scenarios being considered
- Multi-objective optimization

Conclusions

- Overall estimation of search and rescue time
- Successful aircraft assignment
- Fast real-time simulation → strategic planning
- New insights into resource allocation

Future work

- More practical constraints
- Other scenarios
- Uncertainties
- Multi-objective optimization (Pareto solution)